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Bright optical lattices in a longitudinal magnetic field.
Experimental study of the oscillating and jumping regimes
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Abstract. All the bright optical lattices studied so far have been designed to obtain a circularly polarized
light at the bottom of the optical potential wells. This condition minimizes the departure rate of the atoms
from the fundamental adiabatic surface and permits an oscillating regime in a large range of parameters.
We present here an experimental study of cesium atoms in a three-dimensional optical lattice, where the
light is linearly polarized at the bottom of the potential wells. Temperature measurements and pump-
probe spectroscopy give similar results for this lattice and for the conventional lin ⊥ lin lattice (which
have circular polarizations at the bottom of the wells) despite the fact that one lattice operates in the
jumping regime and the other in the oscillating regime. We study the behaviour of the two types of lattices
in a longitudinal magnetic field, with particular emphasis on the zero field and strong field regimes. The
strong field situation is very simple because the eigenstates are then almost pure Zeeman substates and
the adiabatic and diabatic potential surfaces are identical. The comparison between the zero-field and the
high-field situations shows that the diabatic potentials are more appropriate to account for experimental
observations in the novel lattice.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 32.60.+i Zeeman and Stark effects

1 Introduction

Optical lattices [1] consist of cold atoms trapped in a pe-
riodic structure of potential wells induced by the interfer-
ence of several laser beams. Although there have recently
been a few studies on atomic propagation [2] and diffusion
[3,4] inside such a lattice, most of the experiments done
so far dealt with the localization and the oscillation [5–7]
of atoms inside the optical potential wells. In these exper-
iments, the light polarization at the bottom of the wells
was circular. The origin of this choice of polarization can
be traced back to the well-known one-dimensional (1D)
model of sub-Doppler cooling [8] where the atoms inter-
act with two linearly cross-polarized counterpropagating
beams (lin ⊥ lin configuration). Because of the light-shift
of the ground state Zeeman sublevels, the lin ⊥ lin con-
figuration leads to the formation of a periodic structure
of optical potential wells with light circularly polarized at
the bottom of the wells. Further theoretical studies showed
that the atoms are efficiently cooled and trapped inside the
wells [9] and that the probability of escaping a well when
the atoms are confined close to its bottom (Lamb-Dicke
regime) is considerably reduced because of the circular
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polarization of light [10]. In fact, all the designs of bright
optical lattices (i.e. optical lattices where the atoms are
localized near points where their photon scattering rate
is at a maximum) in one, two (2D) and three dimensions
(3D) have matched this rule of circular polarization.

The first aim of this paper is to present a detailed
investigation of an optical lattice where the light polar-
ization is linear at the bottom of the wells [11]. In the
following, we will refer to this lattice as Rot [lin ⊥ lin] lat-
tice because this lattice is obtained when the polarizations
of the four beams of a 3D lin ⊥ lin lattice are rotated by
π/2. An experimental study performed with cesium atoms
shows that this lattice has a cooling efficiency as good as
the 3D lin ⊥ lin four-beam optical lattice [12,13], and
that the atomic localization inside the wells is also ex-
tremely good. The second goal of this paper is to present
the behaviour of the two types of lattices in a longitudinal
magnetic field. For small magnetic fields, a paramagnetic
behaviour was shown in the case of the lin ⊥ lin four-beam
optical lattices [14]. A more detailed study was performed
in the case of grey optical lattices operating on a J −→ J
or a J −→ J − 1 transition [15]. In particular, it was
shown that the dependence of the kinetic temperature of
atoms in the grey lattices with the longitudinal magnetic
field exhibits a sharp increase at low magnetic fields and
a decrease at high magnetic fields. A similar dependence



34 C. Mennerat-Robilliard et al.: Bright optical lattices in magnetic fields

is found for the bright lattices operating on a J −→ J +1
transition. We also show that atomic localization is found
in the two optical lattices studied here both at zero and
high magnetic field. This situation of high magnetic field
is particularly simple because the internal eigenstates are
almost pure Zeeman sublevels. In the case of the lin ⊥ lin
four-beam lattice, one obtains a simple picture general-
izing the initial theoretical models developed for J = 1

2 .
Therefore this lattice also generally operates in the oscil-
lating regime, i.e. the atoms undergo several oscillations
in a well before leaving it. In the case of the Rot [lin ⊥
lin] optical lattice, the transition rate between two Zee-
man sublevels is not reduced by the atomic localization in
the Lamb-Dicke regime. We have thus in this case an ex-
ample of a lattice operating in the opposite regime, called
jumping regime. Despite this apparently important theo-
retical difference, the experimental observations (tempera-
ture measurements, capture efficiency, probe transmission
spectra) exhibit only very small differences. The third goal
of this paper is to compare the use of the diabatic and
adiabatic optical potentials for simple physical interpre-
tations. In zero magnetic field the adiabatic and diabatic
potential surfaces are different but they coincide in high
field. The comparison between the data obtained in the
zero and high magnetic field situations thus permits as-
sessment of the relevance of these two potentials for a
simple interpretation of the experimental results.

2 3D generalizations of the 1D lin ⊥ lin
configuration

2.1 Electric fields

In the 1D lin ⊥ lin configuration, two waves of frequency
ω respectively polarized along the x and y axis coun-
terpropagate along the z direction (Fig. 1a). As shown
in [12], there are two simple methods for transforming this
configuration into a four-beam configuration leading to a
3D optical lattice. The first method consists in splitting
the x-polarized beam into two x-polarized beams mak-
ing an angle 2θ that propagate in the yOz plane and
the y-polarized beam into two y-polarized beams mak-
ing an angle 2θ propagating in the xOz plane. This gives
the lin ⊥ lin four-beam lattice (Fig. 1b) that has been
widely studied experimentally [2,4,7,13,14,16]. In the sec-
ond method, the x-polarized beam is split into two beams
respectively polarized along e1 = cos θex + sin θez and
e2 = cos θex − sin θez that propagate in the xOz plane.
The y-polarized beam is similarly split into two beams
respectively polarized along e3 = cos θey + sin θez and
e4 = cos θey − sin θez that propagate in the yOz plane
(Fig. 1c) (the transition from one lattice to the other is
performed through a π/2 rotation of all the polarizations,
hence the name Rot [lin ⊥ lin] given to the lattice shown
in (Fig. 1c)). The main difference between the two light
patterns is that the π-component is always equal to zero
in the case of Figure 1b whereas a nonzero π-component

Fig. 1. a) The 1D lin ⊥ lin configuration consists of two coun-
terpropagating beams of the same frequency ω and crossed
linear polarizations. b) Beam configuration in the 3D lin ⊥ lin
optical lattice. Two x-polarized beams propagate in the yOz
plane and make an angle θ with the z axis. Two y-polarized
beams propagate in the xOz plane and make the same
angle θ with the z axis. c) Beam configuration for the
Rot [lin ⊥ lin] optical lattice. Two beams, linearly polarized
in the yOz plane, propagate in this yOz plane, making an an-
gle θ with the z axis. The two other beams, linearly polarized
in the xOz plane, propagate in this xOz plane, making the
same angle θ with the z axis.

can be found with the polarizations of Figure 1c. In fact,
for small values of θ, the π-component remains small and
the two lattices are expected to have similar properties.
In both cases, the atoms are expected to be located in po-
tential wells the bottom of which corresponds to circularly
(σ+ or σ−) polarized light. However, when θ increases,
the relative importance of the π-component also increases
and the characteristics of the two lattices become more
and more different. In particular, as shown in [12], the σ+

and σ− potential wells become unstable for the field con-
figuration of Figure 1c when θ ≥ 45◦. The atoms are then
expected to be attracted into wells where the light has a
polarization almost parallel to Oz. It is the first aim of
this paper to study this uncommon situation.

We experimentally investigated two values of θ, one
larger than 45◦ (θ ≈ 55◦) and one below 45◦ (θ ≈ 18◦).
The field configuration of the Rot [lin ⊥ lin] lattice leads
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Fig. 2. Section of the (a) adiabatic and (b) diabatic potentials
in the 3D lin ⊥ lin configuration along the y = z = 0 line for
a Jg = 1 −→ Je = 2 transition. The origin corresponds to a
point of circular (σ−) polarization of light.

to the following σ+, σ− and π components of the electric
field:

E± (r) =
√
2 cos θE0 [±i sin (ksx) exp (ikcz)

− sin (ksy) exp (−ikcz)]

Eπ (r) =2 sin θE0 [cos (ksx) exp (ikcz)

+ cos (ksy) exp (−ikcz)]

where E0 is the amplitude of each lattice beam,
ks = k sin θ and kc = k cos θ. In the limit of small θ, Eπ is
small and the field configuration is not very different from
the 3D lin ⊥ lin case. We thus expect similar physical ob-
servations for θ = 18◦ in the lin ⊥ lin and Rot [lin ⊥ lin]
lattices. By contrast, for θ = 55◦, the π-component dom-
inates the σ+ and σ− components and a clearly different
physical situation is achieved.

2.2 Adiabatic optical potentials

The adiabatic optical potential is calculated by diagonal-
izing the reactive part of the atom-field coupling (light-
shift) operator in the ground state Zeeman sublevels basis
[17]. The adiabatic potentials for the 3D lin ⊥ lin lattice
are well-known [1,12] and their shapes are qualitatively
the same whatever θ (the only difference is a change of
scale along the three spatial axis). We show in Figure 2a
a section of the optical potential of such a lattice along
the y = 0, z = 0 axis for a J = 1 −→ J ′ = 2 transition.
The origin for this plot is taken at a point where the light
is circularly σ− polarized. The light polarization is always
circular (σ+ or σ−) at the bottom of the wells.
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Fig. 3. Section of the (a) adiabatic and (b) diabatic potentials
in the Rot [lin ⊥ lin] configuration with θ = 55◦ along the
y = z = 0 line for a Jg = 1 −→ Je = 2 transition. The origin
is taken at a point where the light is linearly (π) polarized.
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Fig. 4. Section of the (a) adiabatic and (b) diabatic potentials
in the Rot [lin ⊥ lin] configuration with θ = 18◦ along the
y = z = 0 line for a Jg = 1 −→ Je = 2 transition. The origin
is taken at a point where the light is linearly (π) polarized.
Note that this section does not contain the absolute potential
minima which are located in the z = ±λ/4 planes, at points of
circular polarization of light.

We now present the adiabatic potentials for the Rot
[lin ⊥ lin] lattice The origin is taken at a point where the
amplitude of the π-component of the electric field is maxi-
mum. The section of the adiabatic optical potential along
the direction y = 0, z = 0 is shown in Figures 3a and
4a for θ = 55◦ and θ = 18◦ respectively. The lattice field
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at the origin (x = 0) is π-polarized. In the case where
θ = 55◦, two potential minima [A and B in Fig. 3a]
are found. They correspond to points where the light po-
larization is elliptical but the z-component is dominant(
|Eπ|

|E+|
=
|Eπ|

|E−|
∼ 9

)
. It should also be noticed that the

height Uh of the potential hill that separates the minima
is much smaller than the depth U0 of the optical potential

well

(
Uh

U0
∼ 0.02

)
.

In the case where θ = 18◦, no potential minimum is
found in x = 0, y = 0, z = 0. The absolute minima
of the adiabatic potential are found in the plane z =
λc/4 (with λc = 2π/kc = λ/ cos θ) for x =

π
2 + pπ,

y = π
2 + pπ (p integer). The light polarization at these

points is circular. In fact, because Eπ is small for θ = 18
◦,

the optical potential remains close to the potential of the
3D lin ⊥ lin lattice.

2.3 Diabatic potentials

The diabatic potentials are obtained by keeping just the
diagonal terms of the light-shift Hamiltonian in some rea-
sonable basis. The difficulty is of course to define what
“reasonable” means. In most cases, one relates the basis to
the expected light polarization at the bottom of the wells.
For example, in lin ⊥ lin optical lattices, the light polar-
ization is circularly polarized relative to an axis Oz. Hence
the relevant basis is |J,m〉 where mh̄ is an eigenvalue of
Ĵz. In the Rot [lin ⊥ lin] lattice, the light polarization is
linear parallel to Oz at the bottom of the wells for θ ≥ 45◦

and we take the eigenstates of Ĵz as the relevant basis.
We show in Figure 2b the section of the diabatic po-

tential along the y = z = 0 axis for the 3D lin ⊥ lin lat-
tice. The diabatic and adiabatic potentials nearly coincide
close to the potential minima. Actually the only significant
differences occur near the crossing points of the diabatic
potential curves.
The diabatic potential curves for the Rot [lin ⊥ lin] lat-

tice along the y = z = 0 line are shown in Figures 3b and
4b for θ = 55◦ and θ = 18◦ respectively. The diabatic po-
tential curves exhibit minima for x = 0 in Figure 3b (the
lowest potential curve corresponding tom = 0). Note that
the potential energy is the same for m = ±1, the upper
curve is thus degenerate. By contrast, the same minima
are not found for θ = 18◦. In this case, the absolute min-
ima are located at points of circular polarization, as in the
3D lin ⊥ lin lattice.

2.4 Adiabatic or diabatic potentials?

In principle, it is equivalent to use either potential as long
as all terms are included in the Hamiltonian. However, the
use of one type of potential is, in practice, often associated
with some approximations. Basically, (i) the non-adiabatic
motional couplings are often neglected when using the adi-
abatic potentials and (ii) the couplings originating from

the non-diagonal elements of the light-shift operator are
often neglected when one uses diabatic potentials. We wish
now to give more insight into the range of validity of each
of these approximations.
The adiabatic eigenstates |j〉 are generally space de-

pendent. As a result, non-adiabatic couplings between dif-
ferent potential curves do exist. These couplings are of

the order of 〈l

(
d

dt
|j (z (t))〉

)
= 〈l

(
d

dz
|j〉

)
dz

dt
∼ kv

because the space variation of |j〉 occurs on a typical dis-
tance of the order of the wavelength λ. Non-adiabatic cou-
plings are negligible if kv � |Ei − Ej | where Ei and Ej
are the adiabatic potentials. It thus appears that the adi-
abatic approximation is valid if the atoms do not reach
the potential anticrossing (and crossing) points or if their
velocity is relatively small close to these points. This ap-
proximation thus seems reasonable in the case of the lin
⊥ lin lattice because the atoms are mostly located at the
bottom of the wells (see Fig. 2a) far from the anticrossing
points. By contrast, the approximation seems question-
able in the case of the Rot [lin ⊥ lin] lattice (Fig. 3b) for
θ = 55◦ because the atoms cross the anticrossing points
very often and with a very high speed, the anticrossing
points being located near the minima of the potentials (in
x = 0 for example). To have a more quantitative estimate
of the validity of the adiabatic approximation in the Rot

[lin ⊥ lin] lattice, we can use v ∼

√
h̄ |∆′|

M
(where ∆′ is an

estimate of the light-shift and M is the atomic mass) to

obtain h̄ |∆′| � |Ei − Ej |
2
/ER (ER is the recoil energy).

In fact, near the potential minima, Ei − Ej = Dij |h̄∆′|
where Dij roughly corresponds to a difference of squares
of Clebsch-Gordan coefficients and the condition reads
h̄ |∆′| � ER/ |Dij |

2
. By using the numerical values of

the Clebsch-Gordan coefficients, we find h̄ |∆′| � 36ER
for J = 1 −→ J ′ = 2 but h̄ |∆′| � 2 × 103ER for
J = 4 −→ J ′ = 5.
In the case where one uses diabatic potentials, one of-

ten neglects the non-diagonal terms of the light-shift op-
erator in the investigation of the atom dynamics. If we
denote by |m〉 and |n〉 diabatic states having diabatic
energies Em and En, and Vmn the non-diagonal part of
the light-shift Hamiltonian, the validity range of the di-
abatic approximation is |Vmn| � |Em − En|. This con-
dition means first that the shape of the potentials is cor-
rectly described by the diabatic potentials and second that
the transition probability from |m〉 to |n〉 during an opti-
cal pumping time Γ ′−1 remains very small1. In the case of

1 An order of magnitude of the transition probability is

Pm→n
(
Γ ′−1

)
=

|Vmn|
2

|Vmn|
2 + (Em − En)

2 (2.1)

× sin2



√
|Vmn|

2 + (Em − En)
2

Γ ′


 . (2.2)

If |Vmn| � |Em − En|,
we find Pm→n

(
Γ ′−1

)
� 1.
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the lin ⊥ lin lattice, the diabatic approximation fails near
crossing points but, because the atoms do not reach these
points very often, the diabatic approximation is a reason-
able approximation for localized atoms. In the case of the
Rot [lin ⊥ lin] lattice for θ > 45◦, one has Vmn = 0 at
points where the light is π-polarized. At a distance a from
these points Vmn ' h̄∆′Cmnka (where Cmn is a number
derived from Clebsch-Gordan coefficients). The diabatic
approximation is thus valid for localized atoms, for which
Cmnka � Dmn. The range of values of a for which this
condition is fulfilled is however narrow because D01 < C01
(where m = 0 and m = 1 refer to Zeeman substates). The
coupling due to V01 may thus be a limit to the validity of
the diabatic approximation. In conclusion, the adiabatic
and diabatic approximations can be applied to the lin ⊥
lin lattice although the former approximation is probably
slightly more accurate. By contrast, for the Rot [lin ⊥ lin]
lattice, none of the approximations looks obviously judi-
cious. The comparison with the experimental data is thus
essential to find out the best approximation.

2.5 Optical potential in a static longitudinal magnetic
field

The addition of a static magnetic field B0 along the di-
rection z which is used to define the diabatic potentials is
particularly useful to estimate the validity of the diabatic
potential approximation. Indeed, for large values of B0
(i.e. when the total Zeeman splitting 8h̄gFµBB0, gF being
the Landé factor of the lower level and µB the Bohr mag-
neton, is much larger than the light-shift h̄ |∆′|) adiabatic
and diabatic optical potentials coincide because the eigen-
states then correspond to almost pure Zeeman substates.
Furthermore the diabatic potentials for large B0 coincide
with the diabatic potentials for B0 = 0 (apart from a
non-essential translation of each potential curve due to
the Zeeman effect). By comparing the data for B0 = 0
and for large B0, one can thus check the validity of the
diabatic approximation and estimate the corrections orig-
inating from the non-diagonal elements of the light-shift
operator.
The high magnetic field limit (8h̄gFµBB0 � h̄ |∆′|)

corresponds to a simple physical situation analogous to the
one encountered in the 1D lin ⊥ lin model for a 12 −→

3
2

transition. In particular, the lin ⊥ lin optical lattice in a
large B0 field is probably the simplest 3D generalization
of this model, apart from the fact that the transfer of an
atom from the |F,mF = −F 〉 to the |F,mF = F 〉 optical
potential curve requires several optical pumping cycles2.
In this case the atoms are expected to be trapped in poten-
tial wells associated with the |F,mF = F 〉 substate near
points where the lattice field is σ+-polarized and in wells
associated with |F,mF = −F 〉 around points where the
lattice field is σ−-polarized. The probability of escaping
such a well by jumping into another potential surface is
particularly low because of the small value (for large F )

2 The cooling process does not necessarily require a passage
from one extreme Zeeman sublevel to the other.

of the Clebsch-Gordan coefficient connecting |F,mF = F 〉
and |F ′ = F + 1,mF′ = F − 1〉.

2.6 Oscillating and jumping regimes

The distinction between the oscillating and the jumping
regimes of optical lattices was already presented in early
laser cooling papers [9,17]. Basically, the jumping regime
corresponds to a situation where the optical pumping is
so fast that the atom remains in the same potential sur-
face only for very short times. More precisely, an atom
travels over distances much smaller than λ in the same
potential well. As a result, the atom samples all the po-
tential surfaces and the relevant force for the study of the
atomic dynamics is an average force obtained by weight-
ing the force in each surface by its occupation rate [17].
By contrast, in the oscillating regime, an atom remains
for a long time in the same potential surface. In the case
of lin ⊥ lin lattices, and more generally for all the lattices
for which the light polarization is circular at the bottom
of the wells, the usual regime is the oscillating regime. As
shown in [10], this is because the optical pumping is much
reduced by the strong localization of atoms (Lamb-Dicke
limit) around points where the light is circularly polar-
ized (an atom absorbing a σ+ photon from the Zeeman
substate m = J can only return to the m = J substate).
By contrast, no such rule exists in the case of the other
lattices and for example an atom in the potential wells
of Figure 3b jumps from one potential surface to another
with a rate of the order of Γ ′. Because Γ ′ is generally
much larger than the oscillation frequency, a Rot [lin ⊥
lin] lattice generally operates in the jumping regime when
θ > 45◦.
This picture of the jumping lattice developed with the

diabatic potentials of Figure 3b is certainly valid in the
limit of large B0 [11] where the diabatic and adiabatic
potentials coincide. However, the relevance of this picture
for B0 = 0 might be questioned because one could argue
using Figure 3a that the atoms are localized near the adi-
abatic potential minima, i.e. at points of elliptical polar-
ization (with a dominant π-component). As shown in the
following, comparison between the experimental data for
small and large values of B0 proves that the same regime
is found in the two situations.

3 Kinetic temperature

We first compare the cooling efficiencies of the different
lattices by measuring the kinetic temperature of the ce-
sium atoms trapped in these lattices.

3.1 Experimental set-up

Cesium atoms are first cooled and trapped in a MOT,
then the magnetic field and the laser beams of the MOT
are switched off and the four lattice beams are switched
on. These beams are tuned to the red side of the
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6S1/2 (F = 4) −→ 6P3/2 (F
′ = 5) transition, the detuning

∆ = ω − ω0 from the atomic resonance varying between
−6Γ and −30Γ (where Γ is the natural width of the ex-
cited state). The intensity I of the lattice beams can reach
40 mW/cm2. In the case of the experiments performed in
a longitudinal magnetic field, the procedure is the follow-
ing. We first switch on the four lattice beams and when
the atoms are thermalized in the potential wells, we estab-
lish the field B0 in less than 1 ms. After 10 ms, we switch
off both the lattice beams and the magnetic field and mea-
sure the kinetic temperature Tk of the cesium atoms along
the Oy direction using a ballistic method (time-of-flight
measurement). The probe beam for this measurement is
located 10 cm below the position of the lattice3. In tem-
perature measurements the scale for the horizontal axis
is h̄ |∆′| /ER where ∆′ is the total light-shift in the 3D
lin ⊥ lin lattice at a point where the light is circularly
polarized and for a transition having a Clebsch-Gordan
coefficient equal to 14. We now give the results of temper-
ature measurements for B0 = 0 and for a large field

5. The
measurements made in the intermediate field regime are
described in the Appendix A.

3.2 3D lin ⊥ lin lattices

We show in Figure 5 the variation of Tk versus h̄ |∆′| /ER
for the lin ⊥ lin lattice with θ = 55◦ for B0 = 0 (circles)
and for B0 = 10 G (squares). The total Zeeman splitting
8h̄gFµBB0 is equal to 14000 ER, which is a situation that
corresponds to the high field limit (see Appendix A)6. The
corresponding measurements for θ = 18◦ are shown in
Figure 6. All these curves exhibit a linear variation for
large values of ∆′/ER. The values of the asymptotic slopes
are given in Table 1. In particular, we remark that the

3 The initial size of the atomic cloud (∼ 1 mm) and the thick-
ness of the probe beam (0.5 mm) lead to a correction of the
order of −1 µK. Nevertheless, near the decrochage the effective
size of the cloud is much smaller, leading to a correction that
does not exceed −0.2 µK. We neglect this correction, which is
always small compared to the measured temperature.
4 The value of ∆′ is deduced from the position of the trans-
verse vibrational resonance of the lin ⊥ lin lattice (see Sect. 5)
without correction for the anharmonicity of the potential. Be-
cause of the difficulty to measure the lattice beams intensities
precisely at the points where the atoms are located, we con-
sider this method as more reliable, although the potential an-
harmonicity may lead to underestimate ∆′ by a factor of the
order of 20%.
5 The temperatures we present here are slightly different
from the ones published in [11,22]; we have indeed improved
the technique of the measurements and the compensation of
the earth magnetic field. Furthermore the temperature is not
measured along the same direction.
6 For such a large field, there is a significant difference
(∼ 5Γ ) between the resonance frequency detuning ∆ for
m = +4 and m = −4. However the data were taken for detun-
ings significantly larger than 5Γ (∆ = −20Γ for θ = 18◦ and
∆ = −30Γ for θ = 55◦).

Fig. 5. Kinetic temperature measured by a time-of-flight
method in the 3D lin ⊥ lin lattice with θ = 55◦, in the case
of B0 = 0 (circles) and B0 = 10 G (squares). The detuning is
∆ = −30Γ .

Fig. 6. Kinetic temperature measured by a time-of-flight
method in the 3D lin ⊥ lin lattice with θ = 18◦, in the case
of B0 = 0 (circles) and B0 = 8 G (squares). The detuning is
∆ = −20Γ .

slopes for B0 = 0 are consistent with the value 24 nK/ER
measured by Gatzke et al. [16] for θ = 45◦.
We note in both figures and in Table 1 that there is a

significant difference between the temperatures for B0 = 0
and for large B0, the temperature being larger in the high
field limit7. This observation shows that the diabatic ap-
proximation is not appropriate for calculating the temper-
ature in low fields in a lin ⊥ lin lattice.

3.3 Rot [lin ⊥ lin] lattices

Similar temperature measurements were performed in the
Rot [lin ⊥ lin] lattices. The variation of Tk versus
h̄ |∆′| /ER is given in Figures 7 and 8 for θ = 55◦ and
θ = 18◦. The experimental conditions for these measure-
ments were the same as those of Figures 5 and 6. We
find here also linear asymptotes whose slopes are given
in Table 1. The comparison between the values obtained
for B0 = 0 (circles) and large B0 (squares) shows that
the temperatures are very close for θ = 55◦ whereas a
significant difference is found for θ = 18◦. The diabatic
approximation thus seems to be reasonable for θ = 55◦.
We also remark by comparing Figures 5 and 7 on the one
hand and Figures 6 and 8 on the other hand that the

7 Such a result is also found in 1D calculations using the
band model (see Appendix A).
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Table 1. Slope of the asymptotic linear variation of kBT versus ∆
′/ER, in nK/ER. “Large B0” means B0 = 8 G for θ = 18

◦

and B0 = 10 G for θ = 55
◦. Note that ∆′ is deduced from the position of the vibrational resonance in a lin ⊥ lin lattice without

correction for the anharmonicity of the potential. Because the anharmonicity can be significant, this may lead to a possible
systematic error.

Lin ⊥ lin, θ = 18◦ Lin ⊥ lin, θ = 55◦ Rot [lin ⊥ lin], θ = 18◦ Rot [lin ⊥ lin], θ = 55◦

B0 = 0 17± 1 nK/ER 27± 1 13± 0.5 28± 1
Large B0 30± 2 62± 2 23± 1 35± 1

Fig. 7. Kinetic temperature measured by a time-of-flight
method in the Rot [lin ⊥ lin] lattice with θ = 55◦, in the case
of B0 = 0 (circles) and B0 = 10 G (squares). The detuning is
∆ = −30Γ .

Fig. 8. Kinetic temperature measured by a time-of-flight
method in the Rot [lin ⊥ lin] lattice with θ = 18◦, in the
case of B0 = 0 (circles) and B0 = 8 G (squares). The detuning
is ∆ = −20Γ .

temperatures in the Rot [lin ⊥ lin] lattices are equal to
or smaller than the temperatures in the lin ⊥ lin lattices.
Optical pumping originating from the π component of the
lattice field may thus assist the cooling process.

4 Atomic localization

4.1 Raman spectra

To study experimentally the localization of atoms in the
lin ⊥ lin and Rot [lin ⊥ lin] optical lattices, we apply two
probe beams, one along the z-axis (longitudinal probe)
and one along the x direction (transverse probe). The two
probe beams have the same intensity (Ip ' 0.1 mW/cm2)
and the same frequency ωp which is scanned around the
lattice frequency ω. We switch on one probe beam after
the atoms are thermalized in the optical potential, and
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Fig. 9. Probe transmission spectra in the 3D lin ⊥ lin lat-
tice with θ = 55◦. The transverse probe is linearly polarized
along Oy [(a) and (c)] and along Oz [(b) and (d)]. δ is the
frequency detuning between the probe beam and the lattice
beams. Spectra (a) and (b) correspond to B0 = 0 while (c)
and (d) correspond to B0 = 5 G (i.e. a total Zeeman shift
8h̄gFµBB0 = 7000ER). The detuning is ∆ = −13Γ and the
light-shift is h̄∆′ = 550ER. The resonances labelled ΩS, ob-
served only with a π-polarized probe, prove that the atoms are
localized in σ+ and σ− sites.

scan its frequency in 2 ms. This section is devoted to the
presentation of results obtained when δ = ωp−ω is swept
over a range of frequencies large enough that transitions
between different potential surfaces can be observed. As
shown in a previous work [18], these resonances are rela-
tively broad because their widths are determined by the
optical pumping rate. The narrower resonances associated
with the vibrational motion which are found in the center
of the spectrum, will be discussed in Section 5.

4.2 3D lin ⊥ lin lattices

We show in Figures 9 and 10, transverse probe trans-
mission spectra in the lin ⊥ lin lattices for θ = 55◦ and
θ = 18◦. Each of these figures contains two curves obtained
for B0 = 0 with a probe polarization parallel to ey (a) and
to ez (b), and two curves obtained for B0 = 5 G for the
same ey (c) and ez (d) probe polarizations. As expected
from the fact that atoms are localized in potential wells
where the light polarization is circular (σ+ or σ−), broad
resonances labelled ΩS are observed for the π polarization
of the probe. These resonances correspond to Raman tran-
sitions from |F = 4,m = 4〉 to |F = 4,m = 3〉 and from
|F = 4,m = −4〉 to |F = 4,m = −3〉 (see Fig. 13a). Since
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Fig. 10. Probe transmission spectra in the 3D lin ⊥ lin lat-
tice with θ = 18◦. The transverse probe is linearly polarized
along Oy [(a) and (c)] and along Oz [(b) and (d)]. δ is the
frequency detuning between the probe beam and the lattice
beams. Spectra (a) and (b) correspond to B0 = 0 while (c)
and (d) correspond to B0 = 5 G. The detuning is ∆ = −8Γ
and the light-shift is h̄∆′ = 1300ER. The resonances labelled
ΩS, observed only with a π-polarized probe, prove that the
atoms are localized in σ+ and σ− sites. The fact that these
resonances have different intensities in (d) is due to the fact
that the scanning time of the probe frequency (2 ms) is on the
same order as the lifetime of the lattice in large B0 (5 ms).

the atoms are almost all in the m = ±4 Zeeman sub-
levels, the only Raman processes that can occur involve
the absorption of a probe photon. That is why the ΩS
resonances exhibit essentially an absorption component,
and hardly any amplification. In the case of the ey polar-
ization of the probe, a broad resonance associated with
the |F = 4,m = ±4〉 to |F = 4,m = ±2〉 transition is ex-
pected but not observed because the Clebsch-Gordan co-
efficients lead to a much weaker intensity. The fact that
these broad resonances are mainly observed with a π-
polarized probe thus proves that the atoms are localized in
σ+ and σ− sites. The difference in intensity in Figure 10d
between the two Raman components is due to the fact
that the scanning time of the probe frequency (2 ms) is
of the same order as the lifetime of the lattice in large B0
(∼ 5 ms), so that the number of atoms trapped in the lat-
tice is different at the beginning and at the end of the scan.
We checked that the resonances have the same intensity
by scanning the probe frequency in the other direction.

4.3 Rot [lin ⊥ lin] lattices.

We show in Figures 11 and 12 transverse probe trans-
mission spectra in the Rot [lin ⊥ lin] lattices for θ = 55◦

and θ = 18◦. The subfigures follow the same order as in
the previous Section: (a) and (b) correspond to B0 = 0
and a probe polarization parallel to ey (a) and ez (b), (c)
and (d) correspond to B0 = 5 G and a probe polariza-
tion parallel to ey (c) and ez (d). It is immediatly evident
that Figure 12 is almost identical to Figures 9 and 10.
This shows that the same atomic localization is found in
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Fig. 11. Probe transmission spectra in the Rot [lin ⊥ lin]
lattice with θ = 55◦. The transverse probe is linearly polarized
along Oy [(a) and (c)] and along Oz [(b) and (d)]. δ is the
frequency detuning between the probe beam and the lattice
beams. Spectra (a) and (b) correspond to B0 = 0 while (c)
and (d) correspond to B0 = 5 G. The detuning is ∆ = −13Γ
and the light-shift is h̄∆′ = 500ER. The resonances labelled
ΩS, observed only with a σ-polarized probe (along Oy), prove
that the atoms are localized in π sites.
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Fig. 12. Probe transmission spectra in the Rot [lin ⊥ lin] lat-
tice with θ = 18◦. The transverse probe is linearly polarized
along Oy [(a) and (c)] and along Oz [(b) and (d)]. δ is the
frequency detuning between the probe beam and the lattice
beams. Spectra (a) and (b) correspond to B0 = 0 while (c)
and (d) correspond to B0 = 5 G. The detuning is ∆ = −8Γ
and the light-shift is h̄∆′ = 1500ER. This figure is very similar
to those concerning the 3D lin ⊥ lin lattices (Figs. 9 and 10).
The resonances ΩS are observed only with a π-polarized probe,
which proves that the atoms are localized in σ+ and σ− sites.
Resonances in (d) have different intensities because the scan-
ning time of the probe frequency (2 ms) is on the same order
as the lifetime of the lattice (5 ms for large B0).

the Rot [lin ⊥ lin] lattice with θ = 18◦ and in the lin ⊥
lin lattices. Here again, the atoms are found in the lattice
around points where the light is cicularly polarized.
The spectra shown in Figure 11 are clearly very differ-

ent. For B0 = 0, the broad ΩS resonance is observed with
a ey-polarized probe (Fig. 11a) and is absent with the
π-polarized probe (Fig. 11b). Such a result is consistent
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Fig. 13. Scheme of the Raman transitions that can occur be-
tween different potential surfaces in the large B0 situation (a)
in the 3D lin ⊥ lin lattice and (b) in the Rot [lin ⊥ lin] lattice.
All the Zeeman sublevels are not shown. The circles represent-
ing the atomic populations in each level have no quantitative
meaning. The dashed lines correspond to the Zeeman energy,
and the bold lines represent the energy levels including both
the Zeeman and the light shifts. ω is the lattice beams fre-
quency while ωp is the probe beam frequency. In the case of
the lin ⊥ lin lattice, the main Raman transitions are obtained
through the absorption of a photon in the π-polarized probe
beam. In the case of the Rot [lin ⊥ lin] lattice, Raman transi-
tions with a probe polarized along Oy can induce amplification
or absorption of the probe.

with the fact that atoms are localized close to points where
the lattice field is linearly π-polarized. Atoms being in
an eigenstate of Fz cannot undergo a Raman transition
from a Zeeman sublevel m towards a different sublevel
m′ if both the probe and the lattice (pump) fields are
π-polarized. By contrast, transitions from m to m± 1 can
be induced by a π lattice field and the σ probe as shown
in Figure 11a. The lineshape of these ΩS resonances is re-
markably different from the one of the lin ⊥ lin lattices.
Figure 13b shows indeed that both an amplification and
an absorption of the probe can occur, the atoms occupy-
ing almost all the Zeeman sublevels in a π-polarized light
with relative occupation rates π0 = 0.34, π±1 = 0.24,
π±2 = 0.08, π±3 = 0.01, π±4 = 0.0005. Besides, the ratio
of the amplitudes of the two components (amplification
and absorption) is in good agreement with the ratio de-
duced from these occupation rates and Clebsch-Gordan
coefficients. In the case where B0 = 5 G, the situation is
similar. Lateral resonances observed with the ey-polarized
probe are clearly more intense than the resonances ob-
served with the π-polarized probe, which is consistent with
the fact that atoms are localized near points where the lat-
tice field is nearly π-polarized. However the occurrence of
the small lateral resonances in Figure 11d shows that the
probability of finding atoms relatively far away from sites
of pure π polarization is not negligible.

4.4 Fluorescence

It is also possible to obtain information about the atomic
localization by measuring the relative absorptions for sev-
eral probe polarizations or by measuring the different po-
larization components of the fluorescence emitted by the
cesium atoms trapped in the lattice (without any probe
beam). The former method was used in [11] but the inter-
pretation of the results is not easy in the large B0 limit
because of the different Zeeman shifts experienced by the
Zeeman sublevels. A narrow probe beam cannot be res-
onant on all transitions. To get a simple interpretation,
we need large detunings and the signal-to-noise ratio be-
comes a serious problem. For this reason we present results
obtained using the second method in this paper.
The experiments are realized with a frequency detun-

ing ∆ = −8Γ from resonance and a light shift h̄∆′ =
600ER for θ = 55

◦ and h̄∆′ = 1400ER for θ = 18
◦. Two

values of the magnetic field, B0 = 0 and B0 = 5 G, are
considered. We measured the ey (σ) and ez (π) fluores-
cence components along the Ox direction. The values of
the ratio of the fluorescence intensities Iπ/Iσ measured
for the two lin ⊥ lin lattices and the two Rot [lin ⊥ lin]
lattices are given in Table 2. We remark that the values
found for the two lin ⊥ lin lattices and the Rot [lin ⊥ lin]
lattice with θ = 18◦ are nearly the same and that similar
values are found for B0 = 0 and B0 = 5 G. All these re-
sults are consistent with the same atomic localization in
all these lattices. Furthermore, if all the atoms were lo-
calized exactly at the bottom of the wells, the atoms in
mF = +4 would interact only with σ

+ light and those in
mF = −4 with σ− light, leading to a value Iπ/Iσ = 0. The
fact that the experimental values of Iπ/Iσ are close to zero
shows that the localization in these wells is very good. The
values found for the Rot [lin ⊥ lin] lattice with θ = 55◦

are markedly different. If all the atoms were exactly lo-
cated at lattice points corresponding to a π polarization,
we would expect from the steady-state values of the pop-
ulations of the various mF levels a ratio Iπ/Iσ ' 2.3.
The experimental results (see Tab. 2) are thus compat-
ible with a confinement around points where the light is
π-polarized, the confinement being better for B0 = 0 than
for B0 = 5 G. Note that this latest observation also agrees
fairly well with the Raman spectra of Figure 11. One
possible, although probably partial, explanation for the
looser confinement in large B0 fields is that the tempera-
ture is slightly higher for the same value of the light shift
(see Fig. 7).

5 Vibrational motion

5.1 3D lin ⊥ lin lattice

The oscillation motion of atoms near the bottom of poten-
tial wells can be studied using probe transmission spec-
troscopy [1]. Raman transitions between different vibra-
tional levels of the lowest potential wells are oberved as
narrow sidebands located on each side of the Rayleigh
line. The narrow width of these resonances was explained
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Table 2. Fluorescence measurements obtained for ∆ = −8Γ and h̄∆′ = 600ER for θ = 55◦ and 1400ER for θ = 18◦. We give
the ratio Iπ/Iσ of the ez (π) and ey (σ) fluorescence intensities along the Ox direction.

Lin ⊥ lin, θ = 18◦ Lin ⊥ lin, θ = 55◦ Rot [lin ⊥ lin], θ = 18◦ Rot [lin ⊥ lin], θ = 55◦

B0 = 0 0.3± 0.1 0.2 ± 0.1 0.4± 0.1 1.9± 0.2
B0 = 5 G 0.3± 0.2 0.3 ± 0.2 0.3± 0.1 1.5± 0.3

Fig. 14. Plot of the transverse vibrational frequency Ωx in the
3D lin ⊥ lin lattice with θ = 55◦ on a logarithmic scale, for
a detuning ∆ = −13Γ . The circles represent the B0 = 0 case
whereas the squares correspond to B0 = 7 G. The two curves
are nearly superimposed. The slope for both curves is 0.48, in
excellent agreement with the theoretical prediction of 0.5.

as originating from the strong confinement of the atoms
near points where the light is circularly polarized (Lamb-
Dicke limit) [10]. We have repeated those experiments in
the θ = 55◦ lattice to compare the vibrational frequen-
cies for B0 = 0 and B0 = 7 G. We show in Figure 14
the position of the resonance Ωx associated with the x
vibrational motion versus h̄∆′/ER on logarithmic axis

8.
The circles correspond to B0 = 0 and the squares to
B0 = 7 G. In most circumstances, the circles and the
squares are nearly superimposed. This shows that the cur-
vature of the lowest potential curve is nearly the same for
B0 = 0 and B0 = 7 G. Such a result is consistent with the
fact that the diabatic potential (correct for large B0) and
the adiabatic potential have almost the same curvature for
large values of the angular momentum F . Finally, we note
that the slope of the line in Figure 14 is 0.48, in very
good agreement with the value of 0.5 predicted by
theory [1,16].

5.2 Rot [lin ⊥ lin] lattice

The central part of the probe transmission spectra of Fig-
ure 11 also contains narrow vibrational peaks [11]. We dis-
cuss here the results obtained with a transverse probe and
postpone to Appendix B the observations obtained with
a longitudinal probe. We show in Figure 15a vibrational
spectrum obtained for B0 = 0 (a) and B0 = 7 G (b) with
a π-polarized transverse probe in the Rot [lin ⊥ lin] lattice
with θ = 55◦. The vibrational resonances Ωx are located

8 The measurements are actually performed for a single value
of ∆ (∆ = −13Γ ) and the abscissa corresponds to the variation
of the lattice beams intensity.
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Fig. 15. Probe transmission spectra in the Rot [lin ⊥ lin]
lattice with θ = 55◦. The transverse probe is linearly polarized
along Oz. B0 = 0 (a) and B0 = 7 G (b). δ is the frequency
detuning between the probe beam and the lattice beams. The
detuning is ∆ = −13Γ and the light-shift is h̄∆′ = 700ER.
Apart from the amplitude of the resonances (i.e. the number of
atoms trapped in the lattice), the spectra are almost identical.

Fig. 16. Plot of the transverse vibration frequency Ωx in the
Rot [lin ⊥ lin] lattice with θ = 55◦ on a logarithmic scale, for
a detuning ∆ = −13Γ . The circles represent the B0 = 0 case
whereas the squares correspond to B0 = 7 G. The slopes are
0.41 for both cases.

at almost the same position. This is illustrated by the
plot of the position of the Ωx resonances versus h̄∆

′/ER
(Fig. 16)4 for B0 = 0 (circles) and B0 = 7 G (squares).
This observation proves that the dynamics is governed by
very similar potentials for B0 = 0 and B0 = 7 G. Because
the relevant potentials for large B0 are the diabatic po-
tentials, we may thus infer that the diabatic potentials are
also appropriate for the situation in B0 = 0. Finally we
note that the slopes found in Figure 16 for B0 = 0 and
B0 = 7 G are both equal to 0.41, in satisfactory agreement
with the value 0.5 expected for a vibrational motion.
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We remark however that the vibrational resonance in
this Rot [lin ⊥ lin] lattice differs in nature from the reso-
nances obtained in the lin ⊥ lin lattice. Because the atoms
are localized near points where the light polarization is
linear (π), about half of the scattering process induces a
change in the potential surface. The time spent by an atom
in a potential surface is thus on the order of Γ ′−1 (con-
trary to the lin ⊥ lin case, there is here no Lamb-Dicke
factor that lengthens this lifetime). As a result, most of
the points obtained in Figure 16 correspond to the jump-
ing regime of the lattice. The force that acts on the atom
is an averaged force obtained by weighting the force ex-
perienced in each potential surface by its relative occupa-
tion probability. Because this averaged force attracts the
atoms towards the bottom of the π potential wells with a
strength proportional to the distance we recover an har-
monic oscillation which gives rise to the vibrational side-
bands of Figure 15. The averaged force being proportional
to ∆′, the vibration frequency varies as

√
∆′. The frequent

jumps also help to reduce the width of the vibrational reso-
nance because of a motional narrowing effect that prevents
the inhomogeneous distribution of frequencies associated
with each potential surface from being observed [11]9.

6 Conclusion

We have presented the results of an experiment in a 3D
optical lattice where the light polarization is not circular
at the bottom of the wells. Although the potential and the
atomic dynamics (jumping instead of oscillating) are quite
different from the lin ⊥ lin optical lattice, the tempera-
ture and the capture efficiency are quite similar. In fact, it
appears that the cooling and capture efficiencies are quite
robust because when we rotated in a random way the lin-
ear polarizations of the lattice beams, we always found
atoms with a sub-Doppler temperature.
We also compared our experimental results with the

predictions of adiabatic potentials (neglecting non-
adiabatic transitions) and diabatic potentials (neglecting
off-diagonal terms of the light-shift). In particular, we
showed that many results in the Rot [lin ⊥ lin] lattice are
more easily explained with the diabatic potentials when
θ > 45◦. We also showed that the comparison between
the data obtained in low and high magnetic fields hints
at the importance of the terms neglected in the diabatic
approximation. For example, it appears that these terms
have a very small influence on the oscillation, the localiza-
tion and the atomic temperature. On the other hand, we
observed that atoms remain trapped for a longer time in
the lattice when the magnetic field is zero (see Appendix
A). The increase in the lifetime could be associated with
the neglected terms. In fact, it seems that spatial diffusion
remains one of the few important problems not yet fully
understood in bright optical lattices. In the same spirit
as the experiments presented in this paper, a quantitative

9 We note finally that the same argument can be applied to
the 1D experiment of Kozuma et al. [21].

Fig. 17. Kinetic temperatures (measured by a bal-
listic method) as a function of the total Zeeman
splitting h̄ΩB = 8h̄gFµBB0 created by the magnetic field B0
in the 3D lin ⊥ lin (a) and the Rot [lin ⊥ lin] (b) lattices
with θ = 55◦, for two values of the light-shift ∆′. The circles
correspond to h̄∆′ = 250ER whereas the squares correspond
to h̄∆′ = 600ER. The detuning for these measurements was
∆ = −10Γ . The maximum of temperature is shifted to higher
values of B0 when the light-shift increases. Note that the lines
are just to guide the eye and do not represent theoretical fits.

comparison of the spatial diffusion in low and high fields
could improve the understanding of this problem.
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rski for stimulating discussions. This work was supported in
part by the EU (TMR contract FRMX-CT96-0077). Labora-
toire Kastler Brossel is an unité de recherche de l’Ecole Nor-
male Supérieure et de l’Université Pierre et Marie Curie asso-
ciée au CNRS.

Appendix A: Kinetic temperature versus
magnetic field

We present in Figure 17 the variation of the kinetic tem-
perature versus B0 in the lin ⊥ lin (Fig. 17a) and in the
Rot [lin ⊥ lin] (Fig. 17b) optical lattices10 for θ = 55◦.

10 Whereas the velocity distribution can be nicely fitted by a
Gaussian curve for B0 = 0 and for 8h̄gFµBB0 � h̄∆′, this is
no longer the case for intermediate fields. In particular, the ve-
locity distribution exhibits extra peaks centered around v 6= 0.
These peaks correspond to Raman transitions between differ-
ent Zeeman sublevels [19] (see also C. Triché, Ph.D. thesis,
Paris, 1997). The experimental temperatures reported in Fig-
ures 7 and 8 correspond to the width of the peak centered
on v = 0. Note that the theoretical temperatures are associ-
ated with a determination of v2. This is a first reason why
a quantitative agreement between experiment and theory is
not expected. The other reasons are the different dimension-
alities (3D and 1D) and transitions (F = 4 −→ F ′ = 5 and
F = 1 −→ F ′ = 2).
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Fig. 18. Theoretical results obtained using the band model
for a F = 1 −→ F ′ = 2 transition on the 1D lin ⊥ lin config-
uration. (a) Variation of the kinetic temperature as a function
of the total Zeeman splitting h̄ΩB created by a static mag-
netic field along Oz. The calculation was performed with a
light-shift h̄∆′ = 2000ER. The temperature is maximum when
h̄ΩB ' h̄∆

′. A few population resonances [20] are observed on
the curve. (b) Evolution of the kinetic temperature as a func-
tion of h̄∆′, in the case B0 = 0 (solid line) and for a strong
magnetic field, i.e. h̄ΩB � h̄∆′ (dashed line).

Such an experiment has been repeated for several values
of the lattice beams intensity I and we show in Figure 17
the temperature dependence for two values of I. It can be
seen that the position of the maximum is shifted to higher
values of B0 when I increases, a behaviour similar to the
one found in grey lattices [15].
These observations are in agreement with our expec-

tations. A 1D theoretical study of the atomic motion on
the lin ⊥ lin configuration, for a F = 1 −→ F ′ = 2 tran-
sition11, using a full quantum treatment of the center of
mass motion [9], shows that the kinetic temperature Tk in-
creases with B0 at low field, reaches a maximum when the
total Zeeman splitting h̄ΩB = 2h̄gFµBB0 is of the order
of the light-shift h̄∆′ (in agreement with the experimental
observations) and decreases towards an asymptotic value
when B0 further increases (Fig. 18a) shows the theoreti-
cal variation of the temperature of the atoms as a func-
tion of ∆′, when B0 = 0 and in the strong field regime
(2h̄gFµBB0 � h̄∆′). The two curves exhibit similar vari-
ations but the temperature is slightly higher for large B0
than for B0 = 0, in agreement with the experimental ob-
servations (Figs. 5 and 6).
A striking difference between the zero field and the

high magnetic field cases is the difference between the life-

11 The temperature dependence is similar for other transi-
tions, but when F > 1 the variation of T is complicated by the
occurrence of many population resonances (obtained in the sec-
ular regime [20]). We thus chose to present here the simplest
case.
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Fig. 19. Probe transmission spectra in the Rot [lin ⊥ lin] lat-
tice with θ = 55◦ (a) for a longitudinal probe (propagating in
the z direction) linearly polarized along Ox and (b) for a trans-
verse probe (propagating in the y direction) linearly polarized
along Oz. δ is the frequency detuning between the probe beam
and the lattice beams. The detuning is ∆ = −6Γ and the
light-shift h̄∆′ ' 1600ER. The same fundamental vibrational
resonance is observed on both spectra.

times of the lattices. Whereas the number of atoms in the
lattice decreases with a time constant equal to 0.5 s for
B0 = 0 and θ = 55

◦ (the same value is found for the
lin ⊥ lin and the Rot [lin ⊥ lin] lattices), a much shorter
value (5 ms for the lin ⊥ lin lattice, 10 ms for the Rot
[lin ⊥ lin] lattice) is found for large B0. We note that
the cooling mechanism is remarkably simple in the high
field limit because the adiabatic states coincide with the
diabatic |F,mF〉 substates and are thus independent of
the position in the lattice. The non-diagonal terms in the
light-shift Hamiltonian may help the trapping process12.

Appendix B: Selection rules for the vibrational
resonances in the Rot [lin ⊥ lin] lattice

In the case of the lin⊥ lin lattice, a longitudinal probe only
excites the Oz vibration motion [2]. This is however not a
general rule and we show now that in the Rot [lin ⊥ lin]
lattice (with θ = 55◦), both a longitudinal and a trans-
verse probe trigger the oscillation of a transverse mode.
Such an unexpected result is first observed experimen-
tally as shown in Figure 19 where we present a spectrum
obtained with a longitudinal (a) and a transverse probe
(b). The same vibration resonance is found13. This result
holds whatever I and ∆.
We now show how this result can be explained from

the expression of the operator that connects the initial
and final states of the Raman transition. A Raman process

12 Moreover one cannot exclude the fact that the bunching
of velocities around a nonzero value as mentioned in footnote
10, although less important than for intermediate B0, also con-
tributes to the escape of atoms.
13 The harmonics are different however.
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consists of the absorption of a photon in the lattice field
and the emission of a photon in the probe beam (or vice
versa). The transition operator14 is nearly proportional to

E
(−)
P (r) ·E(+)L (r) where E

(+)
L (r) is the positive frequency

component of the lattice field and E
(−)
P (r) is the negative

frequency component of the probe field. Using

E
(+)
L (r) = E+ (r) e+ + E− (r) e− + Eπ (r) ez

E
lg(−)
P (r) = Ep exp (−ikpz)ex

E
tr(−)
P (r) = Ep exp (−ikpx) ez

where E
lg(−)
P (r) stands for the longitudinal probe and

E
tr(−)
P (r) for the transverse probe; kp is the modulus of
the probe wavevector, which is essentially equal to that of
the lattice beams k.
Using an expansion up to second order in x, y, z of

E
(+)
L (r) and E

(−)
P (r) near r = 0 (corresponding to a π-

polarized site), one finds that

E
(+)
L (r) · Elg(−)P (r) ∝ −iksx+ ksxz (kc − kp)

and that

E
(+)
L (r) ·Etr(−)P (r) ∝ 2− ikpx− k

2
s

x2 + y2

2
− k2cz

2 − k2px
2

Thus for both probes the expansion of the scalar op-

erator E
(−)
P (r) ·E(+)L (r) does not contain any term linear

in z near the bottom of a potential well. The only lin-
ear terms correspond to a transverse motion (in the xOy
plane).
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